Drug-resistant disseminated polyclonal Mycobacterium avium complex in a patient with AIDS: a case report and review of the literature

P. Bagella¹, G. Madeddu¹, R. Are¹, F. Peruzzu¹, G. Bagella², G.M. Calia¹, M.S. Mura¹

¹Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
²Unit of Radiology, Sassari University Hospital, Sassari, Italy

ABSTRACT:
Mycobacterium avium complex (MAC) disseminated infection is an opportunistic infection that occurs almost exclusively in immunocompromised individuals. We report an interesting case of multidrug-resistant polyclonal disseminated MAC infection in a patient with AIDS. During combination anti-MAC therapy, cultures became negative but he developed sensorineural hearing loss as a result of azithromycin ototoxicity.

Key words: Mycobacterium avium complex, AIDS, Polyclonal, Drug-resistant, Azithromycin, Ototoxicity.

INTRODUCTION
The development of Highly Active Antiretroviral Therapy (HAART) has resulted in marked changes in the outcome of Human Immunodeficiency Virus (HIV) disease, with significant reductions in mortality as well as opportunistic infections. In this scenario, the risk of non-HIV-related morbidity, including cardiovascular and bone disease, neurocognitive impairment and malignancies, has dramatically increased in recent years. However, morbidity and mortality in Acquired Immunodeficiency Virus Syndrome (AIDS) presenters are still related to opportunistic infections, including Mycobacterium avium complex (MAC). MAC organisms are non-chromogenic slow-growing mycobacteria classified in Runyon group III. The complex consists of three species, M. avium, M. intracellulare, and M. leprae-murium. Mycobacterium avium consists of three subspecies, of which only M. avium subspecies avium is a human pathogen.

Here, we report a case of multidrug-resistant polyclonal disseminated MAC (DMAC) infection in a patient with AIDS.

CASE REPORT
Our patient, a 37-year-old HIV-positive man, was diagnosed as a late presenter and admitted to our Infectious Diseases Clinic with wasting syndrome and Cytomegalovirus (CMV) disease. At baseline, plasma HIV RNA was 620000 copies/ml and the CD4+ T-cell count was 3 cells/µl (3%). Therefore, he immediately started antiretroviral therapy, antiviral therapy for CMV along with supportive and opportunistic infection prophylactic therapy for Pneumocystis pneumonia and Toxoplasmosis.

According to international guidelines, he also started chemoprophylaxis for MAC infection with azithromycin 1200 mg once weekly. However, prophylaxis was interrupted because of a progressive elevation of serum alkaline phosphatase and gamma-glutamyl transferase.

A few months later, he was admitted again to our Clinic due to fever, weight loss and progressive elevation of liver enzymes. A Computed Tomography scan showed multiple enlarged mediastinal and abdominal lymph nodes (Figure 1). He was diagnosed with DMAC infection by direct smear, polymerase chain reaction (PCR) and cultures of sputum and stool specimens.
He started empiric treatment with azithromycin 600 mg once daily, rifabutin 150 mg daily and ethambutol 15 mg/kg daily with poor improvement, persistent elevation of hepatic enzymes, fever, malaise and pancytopenia. A bone marrow biopsy and bone marrow blood cultures were positive for MAC. Microbiological analysis of MAC strain cultures (on both sputum and stool) showed resistance to several first-line antimicrobials, including ethambutol and rifabutin (Table 1). On the basis of the antimicrobial susceptibility testing, moxifloxacin was added to the other drugs. The treatment was continued with ethambutol, even if resistant, until the end of the second month, because of its important role in preventing macrolides resistance. Treatment with rifabutin was also continued due to the sensitivity of the antimicrobial susceptibility testing from bone marrow. After twenty days of antimicrobial therapy, culture became negative and the patient experience a good clinical and laboratory response. However, he started complaining of a progressive hearing loss and the audiogram revealed mild to moderate bilateral sensorineural hearing loss. Suspecting azithromycin ototoxicity, antimicrobial treatment was modified with intermittent azithromycin administration (600 mg three times weekly).

At this time, after two months since the beginning of the new regimen, cultures from sputum, blood and stool, as well as cultures from bone marrow, are still negative and the patient reports a sensible improvement in hearing impairment.

DISCUSSION

MAC is a group of common environmental bacteria of relatively low virulence in immunocompetent individuals. MAC organisms have been isolated from a variety of environmental sources, including water, soil, birds, pigs, and cattle. The exact route of acquisition from environmental sources to humans is uncertain, but indirect evidence favours acquisition through either the gastrointestinal or the respiratory tracts.

However, the mechanisms of subsequent dissemination are uncertain. The sites where MAC are most frequently found include the blood, bone marrow, lymph nodes, gastrointestinal tract, liver, and spleen.

A critical requirement for the development of DMAC infection is severe CD4+ lymphocyte depletion (<50 cells/µl). DMAC disease is a life threatening illness that occurs almost exclusively in advanced HIV disease and rarely among other severely immunocompromised individuals.

Clinical features of disseminated MAC infection are not specific and include fever (>80%), night sweats (>35%), weight loss (>25%), abdominal pain or diarrhoea. Laboratory results may show anaemia, elevated serum alkaline phosphatase, and elevated serum lactate dehydrogenase. Hence, the diagnosis of DMAC infection can only be made by using laboratory tests. The preferred investigation for DMAC infection is based on mycobacterial blood, sputum and stool cultures. All cultures for mycobacteria should include both solid and broth (liquid) media for the detection and enhancement of growth. Occasionally, the diagnosis is made by bone marrow, lymph node or duodenal biopsy.

Because of differences in antimicrobial susceptibility that determine treatment options, species-level identification of non-tuberculous mycobacterial diseases is becoming increasingly important. We utilized Acidium ester-labeled DNA probes specific for MAC.

Successful treatment is based on both anti-mycobacterial therapy and HIV treatment to improve the under-

<table>
<thead>
<tr>
<th>DATE</th>
<th>SOURCE</th>
<th>SPOTUM</th>
<th>BONE MARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/10/2014</td>
<td>EMB</td>
<td>16 ug/m</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>RIF</td>
<td>2 ug/m</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>RBN</td>
<td>0.5 ug/m</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>PIR</td>
<td>>16 ug/m</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>CLR</td>
<td>2 ug/m</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>STR</td>
<td>4 ug/m</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>LIN</td>
<td>>16 ug/m</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>MOX</td>
<td>1 ug/m</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>DOX</td>
<td>>16 ug/m</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>IMI</td>
<td>>16 ug/m</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>ETI</td>
<td>>16 ug/m</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>AMK</td>
<td>0.5 ug/m</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>A/AC</td>
<td>>16 ug/m</td>
<td>R</td>
</tr>
</tbody>
</table>

AMK: amikacin; A/AC: Amoxicillin clavulanate; CIP: ciprofloxacin; CLR: clarithromycin; DOX: doxycycline; EMB: ethambutol; ETI: ethionamide; IMI: imipenem; ISN: isoniazid; LEV: levofloxacin; MOX: moxifloxacin; N/D: not determined; PIR: pyrazinamide; R: resistant; RBN: rifabutin; RIF: rifampin; S: sensitive; STR: streptomycin
lying immunosuppression. The cornerstone of therapy for DMAC is a macrolide, usually in addition to rifabutin, easier to use with most antiretroviral drugs than rifampicin, and ethambutol.

For patients with macrolide-resistant strains, treatment regimens are less successful. Possible options include aminoglycosides, such as amikacin, quinolones, such as moxifloxacin, and linezolid.

Treatment of MAC in patients with AIDS should be considered lifelong, unless immune restoration is achieved by antiretroviral therapy. MAC treatment may be stopped, with a low risk of recurrence, for patients who are asymptomatic and have achieved a CD4+ T-cell count greater than 100 cells/µl for at least 12 months. Secondary prophylaxis should be reintroduced if the CD4+ T-cell count decreases to less than 100 cells/µl.

Azithromycin has a very long half-life, up to 70 hours, and it is concentrated in phagocytes and tissues, including the lung. Intermittent azithromycin, 1200 mg on a once-weekly basis, has been shown to be effective as chemoprophylaxis against DMAC. Only few data are available in literature about the use of intermittent therapy for DMAC. Some prospective trials demonstrated that multidrug regimens including azithromycin, given intermittently, can be effective to obtain negative cultures and are generally well tolerated.

Azithromycin can rarely cause ototoxicity. From the few data available in the literature on azithromycin-related ototoxicity in HIV-infected patients, symptoms usually developed within 30-90 days and resolved 2-11 weeks after the drug discontinuation. Hearing loss usually is bilateral and mild to moderate. Azithromycin toxicity appears dose and serum level related. The mechanism of dose-related ototoxicity is unclear: patients who received standard azithromycin dosages for respiratory infection had considerably less drug exposure than those who received it for HIV-associated indications. HIV-positive patients may also be at risk of developing hearing complications secondary to opportunistic infections or other potentially ototoxic drugs.

Finally, it has been reported that almost 24% of patients with AIDS and DMAC infection have a polyclonal infection. Of importance, the different strains of MAC that simultaneously infected the patient may have different antimicrobial susceptibility patterns.

In conclusion, the emergence of multidrug-resistant MAC represents a threat to HIV/AIDS patients. The existence of polyclonal infection among AIDS patients with disseminated MAC is an additional factor to be considered. Our case suggests that multidrug regimens including azithromycin, given intermittently, can be effective to achieve negative culture in patients with resistant MAC disease. However, patients receiving prolonged high-dose azithromycin therapy should be monitored for the development of ototoxicity.

References

