Chronic fatigue syndrome and chronic EBV infection: a long-term challenge in a single clinical case

V. Fiore1, P. Bagella1, F. Peruzzu1, G. Caruana1, S. Zaru2, M.S. Mura1

INTRODUCTION

The chronic fatigue syndrome (CFS) is a controversial clinical condition, which predominantly affects young adults, with a peak age of onset between 20 and 40 years, and it is most common in females than in males with a ratio of 6:1.1,2. No pathognomonic signs or diagnostic tests for this condition are available, no specific treatment does exist and CFS diagnosis can be made only by exclusion.3,4 According to the Centers of Disease Control and Prevention (CDC), physicians have to suspect this condition if the individual has a severe chronic fatigue for 6 or more consecutive months, interfering with daily activities, and the patient has 4 or more of the following symptoms: unrefreshing sleep, muscle pain, headaches of a new type, polyarticular pain without swelling or redness, tender of lymph nodes in the neck or armpit, frequent or recurring sore throat. Actually, the etiology remains unknown and a lot of conditions and viral infections have been linked to CFS, such as EBV infection. CFS is not synonymous of chronic EBV infection or chronic infectious mononucleosis, although they have been often associated.

We report a clinical case of CFS with EBV chronic infection in a 28 years-old girl from Sassari, in Northwest Sardinia.

CASE REPORT

The patient was referred to the Infectious Disease Unit of the University of Sassari on April 2015 for the onset of fatigue, headache, sleep disorders and muscle-skeletal pain associated to dyspeptic syndrome since 2007, right after hospitalization for EBV glandular fever.

She had a medical history of PolyCystic Ovary Syndrome (PCOS) and endometriosis treated with hormonal therapy, a BMI of 25.5 kg/m² and she was not affected by other health disorders.

The cardiopulmonary physical examination was negative, only abdominal tenderness on right quadrants was present.
Laboratory results showed normal white blood cells, with 45% of lymphocytes and 42% of neutrophils; liver, kidney and thyroid were normal; all tests for autoimmune disorders were negative; stool samples were negative for Calprotectin, Helicobacter pylori antigen, bacterial, ova and parasites research.

ELISA test for mononucleosis resulted positive for EBV VCA IgM and IgG, EBV-EBNA and EBV-EA (Table 1), tested on three samples from serological archive in January 30th 2007, February 17th 2007 and April 8th 2015. Tests for HIV, CMV and enteroviruses were negative. EBV-DNA was highly positive (1937 copies/ml), CMV-DNA was negative, excluding cross-reaction (Table 1).

Clinical features, according to CDC indications, were compatible with CFS.

Thereupon, the patient started therapy with low-dose steroids and multivitamins, with benefit. EBV-DNA has persisted slightly positive during the follow-up until present day.

DISCUSSION AND CONCLUSION

Although CFS is a syndrome of unclear origin, many theories have been postulated but further studies are needed to finally elucidate the causative agent and mechanism. Several conditions, such as viral infections, allergies, nutritional deficiency, hormonal alterations or emotional stress may contribute to its development; a common element seems to involve immune system. Particularly, EBV infection. In fact, given its capability to create immune disorders, it has been associated with many health disorders⁷,⁸.

Most studies on the link between mononucleosis and CSF are based on antibody titres, showing discordant results. On one hand some studies sustain a correlation⁹, whereas others deny the association arguing that high titre of immunoglobulin G (IgG) to viral capsid antigen (VCA) of EBV in patients with CFS is an incidental finding and that there is not a difference of IgG-VCA titres between patients with CFS and healthy controls⁹, the same would apply to the EA titre⁹. No data are available about the use of IgM titres.

Of importance, the White’s London cohort, which followed up 250 primary care patients presenting glandular fever, 44% EBV-related and 34% non-EBV, or upper respiratory tract infection, showed a prevalence of CFS of 9-22% six months after glandular fever, compared with 0-6% in the second group¹¹.

The presence of other factors such as a higher BMI and hormonal dysregulation during a chronic EBV infection may probably favor the development of CFS¹².

EBV-DNA is a more sensitive test for the real presence of an actively replicating virus and gives a more direct explanation of the EBV life-cycle. EBV replication may be the trigger or the consequence of CFS, likely related to an immunological unbalanced situation.

No easy conclusions can be drawn from a single case report; we believe that further studies, conducted in a larger cohort of patients including EBV DNA measurement in blood, could better clarify if there is an association between persisting EBV viremia and CFS¹³.

CONFLICT OF INTERESTS:
The Authors declare that they have no conflict of interests.

REFERENCES

Table 1. ELISA and PCR results in a patient with chronic fatigue syndrome.

<table>
<thead>
<tr>
<th>Diagnostic test</th>
<th>1st evaluation 30/01/2007</th>
<th>2nd evaluation 17/02/2007</th>
<th>3rd evaluation 08/04/2015</th>
<th>Cut off</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV-VCA IgG</td>
<td>750 UL/ml</td>
<td>750 UL/ml</td>
<td>487 UL/ml</td>
<td>> 20 (UL/ml)</td>
</tr>
<tr>
<td>EBV-VCA IgM</td>
<td>160 UL/ml</td>
<td>160 UL/ml</td>
<td>61 UL/ml</td>
<td>> 40 (UL/ml)</td>
</tr>
<tr>
<td>EBV-EBNA IgG</td>
<td>172 UL/ml</td>
<td>145 UL/ml</td>
<td>481 UL/ml</td>
<td>> 20 (UL/ml)</td>
</tr>
<tr>
<td>EBV-EA IgG</td>
<td>74 UL/ml</td>
<td>76 UL/ml</td>
<td>78 UL/ml</td>
<td>> 40 (UL/ml)</td>
</tr>
<tr>
<td>EBV-DNA</td>
<td>1937 cps/ml</td>
<td>Not detected</td>
<td>< 139 (copies/ml)</td>
<td></td>
</tr>
<tr>
<td>CMV-DNA</td>
<td></td>
<td></td>
<td>< 278 (copies/ml)</td>
<td></td>
</tr>
</tbody>
</table>