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INTRODUCTION

Multiple-drug therapy, while helpful, does not guaran-
tee the absence of drug-resistant infections. As a result, 
we cannotbe sure that multidrug therapy will not lead to 
drug-resistant tubercle bacilli1.

According to the World Health Organization’s 
(WHO) 2014 global tuberculosis report2, there had been 
approximately 9.0 million new tuberculosis (TB) pa-
tients and 1.5 million deaths in 2013. In addition, 3.5% 
of newly diagnosed and 20.5% of previously treated 

patients had multidrug-resistant TB (MDR-TB, defined 
as bacillary resistance to at least rifampicin [RMP] and 
Isoniazid [INH]) in 2013. Eastern Europe and Central 
Asia had the highest prevalence of MDR-TB, with rates 
exceeding 20% and 50%, respectively. Furthermore, by 
the end of 2012, the WHO had received reports of at 
least one case of extensively drug-resistant tuberculo-
sis (XDR-TB, defined as MDR-TB with additional re-
sistance to fluoroquinolone(s) [FQs] and one or more 
of three second-line injectable drugs [SLIDs], namely 
capreomycin [CPM], kanamycin [KM], and amikacin 
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tetracycline-resistant bacteria that produce the expen-
sive TetA efflux pump are likely to be outcompeted by 
susceptible strains in an antibiotic-free environment21. 
However, experiments have shown that the fitness cost 
of tetracycline resistance without antibiotic pressure is 
minimal19,22. This review aims at clarifying the mecha-
nisms and interactions between drug resistance muta-
tions with fitness costs and the drug resistance pheno-
types of Mycobacterium tuberculosis.

GENES INVOLVED IN DRUG RESISTANCE,
MECHANISMS, INTERACTIONS, MUTATIONS 
AND DRUG RESISTANCE ACQUISITION

A good number of genes naturally found in Mycobacte-
rium tuberculosis contribute to its well-renowned drug 
resistance with the occurrence of multidrug-resistant 
(MDR) and extensively drug-resistant (XDR) strains. 
M. tuberculosis, like every other bacterium, possesses 
intrinsic mechanisms of drug resistance, including a 
thicker and more hydrophobic cell wall due to the pres-
ence of a variety of lipids, which include mycolic acids 
to prevent drug penetration. It also possesses various 
enzymes that hydrolyze various drugs, such as β-lact-
amases, which break down β-lactam antibiotics, and en-
zymatic drug target modification and drug efflux from 
the cytoplasm23.

The genes of interest in mycobacterial drug resis-
tance are numerous, and this work is focused on those 
relevant to resistance to first and second-line anti-tuber-
cular drugs.

KatG

The katG gene is a 2223bp long gene with locus 
MG995340, which encodes the protein Catalase-Peroxi-
dase in Mycobacterium tuberculosis (strain ATCC 25618/
H37Rv)24. It is a bi-functional enzyme oxidizing numer-
ous electron sources, including NADP (H), with catalase 
and broad-spectrum peroxidase activity25. It protects M. 
tuberculosis from damaging reactive oxygen species 
(ROS), such as hydrogen peroxide and organic perox-
ides, by dismutation and helps it surviving in host macro-
phages by preventing phagocyte oxidative burst26,27.

The enzyme Catalase-Peroxidase has a function in 
acquiring drug resistance by M. tuberculosis, that is, 
its broad-spectrum catalase and peroxidase activity 
that leads to the oxidation of numerous electron sourc-
es, including NADP(H). Consequently, this leads to 
activating one of the essential first-line anti-tubercular 
drugs, i.e., Isoniazid, administered as a pro-drug. In its 
pro-drug form, INH penetrates the bacterial cell to the 
cytoplasm, where it is activated. Therefore, the enzyme 
encoded by katG mediates the susceptibility of M. tu-
berculosis to Isoniazid28. This phenomenon is of par-
ticular interest as it has been shown that in Escherichia 
coli, with a similar Catalase-Peroxidase enzyme called 
hydroperoxidase 1, the activity of this enzyme does not 
induce isoniazid susceptibility28.

[AMK]). XDR-TB was found in about 9% of MDR-TB 
patients. As a result, the global drug-resistant tuberculo-
sis (DR-TB) epidemic continues to be a serious concern, 
which is exacerbated by co-infection with the human 
immunodeficiency virus (HIV)3.

In M. tuberculosis, two forms of antibiotic resis-
tance are known: genetic and phenotypic resistance. 
Mutations in chromosomal genes cause drug resistance 
in growing bacteria. In contrast, phenotypic resistance 
or drug tolerance is caused by epigenetic alterations in 
gene expression and protein modification in non-grow-
ing persister bacteria. The two types of resistance have 
generated a slew of issues in effective TB control, with 
genetic resistance, as seen in MDR-/XDR-TB, wreak-
ing havoc worldwide. In contrast, phenotypic drug re-
sistance, or tolerance as seen in persisters, necessitates 
prolonged treatment and increases the risk of post-treat-
ment relapse4,5. In vivo, the situation appears to be more 
complicated, with the two types of resistance overlap-
ping and interconverting. Prior stress or sub-inhibitory 
drug concentrations can induce efflux pump expression, 
resulting in phenotypic resistance and possibly facilitat-
ing the development of more stable genetic drug resis-
tance6.

In contrast, genetic drug resistance in growing or-
ganisms can develop the persistence of phenotypic re-
sistance. Understanding the biology of mycobacterial 
persisters and creating anti-tuberculosis medications 
that target them is becoming increasingly popular 
amongst researchers. The selection of genetic mutations 
predominantly develops drug-resistant strains of M. tu-
berculosis. This is almost entirely artificial, resulting 
from poor physician prescribing or patient compliance. 
However, recent evidence suggests that pharmacokinet-
ic-pharmacodynamics situations involving the stimula-
tion of the mycobacterial drug efflux pump may aid the 
establishment of genetic alterations in M. tuberculosis7. 
The development of drug resistance in M. tuberculosis 
due to mutations in drug resistance genes may cost the 
organism’s fitness and virulence. Recent comprehensive 
analyses8,9 have suggested a link between M. tuberculo-
sis primary resistance and HIV co-infection, implying 
that transmitted DR-TB poses a severe barrier to man-
aging this patient population. In addition, recent inves-
tigations11 from China have found that a considerable 
number of MDR- and XDR-TB cases are due to active 
transmission of (mostly) the Beijing genotype (“W-Bei-
jing”)10, and the same genotype is found in Europe and 
Africa12. This is a concerning development that neces-
sitates additional research to understand how such vir-
ulent DRTB strains evolve and adapt in the host and the 
need for more effective transmission control methods.

Antibiotic resistance is typically linked to fitness 
losses, such as those caused by high energy consump-
tion by resistance machinery or the onerous expression 
of resistance proteins13-17. These findings show that a 
bacterial population should be biased away from drug 
resistance without antibiotic pressure18-20. Compensa-
tory mutations and precise regulation of costly protein 
production lower the effective cost in practice, sub-
stantially eliminating fitness disparities. For example, 
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AhpC

The ahpC gene is a 255bp DNA long gene with lo-
cus MTU43812 that encodes the Alkyl hydroperoxide 
reductase C protein in Mycobacterium tuberculosis 
(strain ATCC 25618/H37Rv)24. Hydrogen peroxide and 
organic hydroperoxides are reduced to water and al-
cohol, respectively, by this thiol-specific peroxidase. 
Detoxifying peroxides aids in cell defence against ox-
idative stress. With AhpD, DlaT, and Lpd, it forms an 
NADH-dependent peroxidase that can degrade hydro-
gen and alkyl peroxides while also acting as a peroxyni-
trite reductase, shielding the bacterium against reactive 
nitrogen intermediates and oxidative stress caused by 
the host immune system47-49.

AhpC encodes alkyl hydroperoxide reductase C, an 
enzyme that serves to protect M. tuberculosis from ox-
idative stress from reactive nitrogen intermediates and 
hydrogen peroxides produced by the host cell, as stated 
earlier. No mutations in the ahpC have been shown to 
mediate resistance to Isoniazid; however, in an extensive 
collection of Isoniazid (INH)-resistant clinical isolates of 
Mycobacterium tuberculosis, mutations in the regulatory 
region of the ahpC gene that result in overproduction of 
alkyl hydroperoxide reductase were found often, but not 
in INH-susceptible bacteria. The overexpression of ahpC 
does not appear to be harmful. However, because most of 
these strains were already catalase-peroxidase deficient, 
this is critical for INH resistance50.

KasA

The kasA gene is a 1251bp DNA long gene that encodes 
the protein, 3-oxoacyl-[acyl-carrier-protein] synthase 
1 in Mycobacterium tuberculosis (strain ATCC 25618/
H37Rv)24. It is a part of the mycobacterial fatty acid 
elongation system, FAS-II, which is important in my-
colic acid synthesis. It specifically catalyzes long-chain 
acyl-ACP substrates’ elongation by adding two malo-
nyl-ACP carbons to an acyl group acceptor51,52. It is also 
involved in the mycolate chain’s initial elongation and 
the formation of monounsaturated fatty acids with an 
average carbon length of forty53.

kasA, much like inhA, encodes the enzyme, 3-oxoa-
cyl-[acyl-carrier-protein] synthase 1. As stated earlier, 
this enzyme is also a part of the mycobacterial fatty acid 
elongation system, FAS-II, important in mycolic acid 
synthesis. The enzyme is a target of the activated form 
of Isoniazid, forming a part of the covalent complex 
along with inhA that inhibits mycolic acid synthesis and 
kills the bacteria. It is also worthy of note that kasA is 
a target for and is inhibited by the indazole JSF-328554; 
unlike inhA, where its overexpression plays a signifi-
cant part in drug resistance45, kasA has undergone sev-
eral mutations that contribute to drug resistance. The 
mutations include a change of Aspartate to Asparagine 
at position 66, Glycine to Serine at position 269, Glycine 
to Serine at position 312, and Phenylalanine to Leucine 
at position 413, with all four mutations contributing to 
increased resistance to Isoniazid53.

It has been noticed in most isoniazid-resistant strains 
of M. tuberculosis that resistance is linked to either sim-
ple base pair alterations that result in missense muta-
tions or minor deletions in the katG gene29-32. Many iso-
niazid-resistant clinical isolates have mutations in katG, 
which cause catalase/peroxidase activity to be abolished 
or decreased, resulting in a lack of Isoniazid activation 
or a lower affinity for Isoniazid. Other Isoniazid resis-
tance pathways include katG gene deletion and katG 
expression down-regulation caused by mutations in the 
furA-katG intergenic region33-35. The most critical muta-
tion in the katG gene that contributes to isoniazid resis-
tance results in a single change of the primary protein 
structure, with the replacement of the amino acid serine 
with threonine at position 315; thus, the generation of 
Isoniazid-NAD adducts is reduced by a factor of 20, and 
affinity for Isoniazid is greatly diminished35,36.

InhA

The inhA gene is an 828bp DNA long gene with locus 
MG995265, which encodes the protein, Enoyl-[acyl-car-
rier-protein] reductase [NADH] in M. tuberculosis 
(strain ATCC 25618/H37Rv)24. Functionally, the type 
II fatty acid synthase (FAS-II) system enzyme enoyl-
ACP reductase is involved in the production of mycolic 
acids, which are a key component of mycobacterial cell 
walls37. It catalyzes the NADH-dependent reduction of 
the double bond of 2-Trans-enoyl-[acyl-carrier protein], 
which is a significant step in the FAS-II pathway’s fatty 
acid elongation38. Phosphorylation on Thr-266 lowers 
InhA activity (5-fold reduction) and presumably neg-
atively controls mycolic acid production and bacterial 
growth39,40.

InhA, much like katG, mediates resistance to Isoni-
azid and ethionamide (ETH), a second-line anti-tuber-
cular drug41. The enzyme encoded by inhA, Enoyl-[a-
cyl-carrier-protein] reductase, is NADH-dependent. Its 
function of interest in mediating drug resistance is the 
part it plays in mycolic acid synthesis as part of the bac-
terial FAS-II system. Isoniazid, in its active form, forms 
a covalent compound with Enoyl-[acyl-carrier-protein] 
reductase and kasA, a beta-ketoacyl carrier protein syn-
thetase, which prevents mycolic acid synthesis and kills 
the cell. Isoniazid’s action against InhA is mediated 
via covalent attachment of the drug’s activated form to 
NAD’s nicotinamide ring and binding of the INH-NAD 
adduct to inhA’s active site42,43. Ethionamide, a drug 
similar in structure to Isoniazid, also inhibits mycolic 
acid synthesis in M. tuberculosis44.

It has been observed45 that the overexpression of 
inhA confers isoniazid and ethionamide resistance to 
M. tuberculosis, and there is a good amount of cross-re-
sistance between both drugs. Many clinical isolates re-
sistant to Isoniazid and ethionamide have mutations in 
the inhA gene. The single substitution of alanine for ser-
ine 94 confers resistance to Isoniazid and ethionamide; 
this drug resistance appears to be directly related to a 
disruption in the hydrogen-bonding network that reduc-
es the binding of NADH and the INH-NAD adduct43,46.
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in M. tuberculosis (strain ATCC 25618/H37Rv)24. Arabi-
nosyl-transferase is a polymerization enzyme that converts 
arabinose to arabinan in arabinogalactan, an essential com-
ponent of the mycobacterial cell wall of M. tuberculosis62.

The arabinosyl-transferase encoded by the gene 
embB is the target for the first-line anti-tubercular drug, 
Ethambutol, whose mechanism of action involves inhib-
iting the enzyme’s activity and thus preventing bacterial 
cell wall formation. Two main methods acquire resis-
tance to Ethambutol. Firstly, there are many mutations in 
embB that confer ethambutol resistance, which include: 
Serine-Alanine at position 297, Methionine- Isoleucine/
Leucine/Valine at position 306, Aspartate-Glycine/Ty-
rosine at position 328, Phenylalanine-Valine at position 
330, Tyrosine-Histidine at position 336, Glycine-Ala-
nine/Cysteine/Aspartate at position 406, Glutamine - 
Lysine/Arginine at position 497, Glycine-Aspartate at 
position 745, Aspartate-Alanine at position 959, Methi-
onine-Arginine at position 1000, Aspartate-Asparagine 
at position 102463,64. Secondly, overexpression of embB 
also results in resistance to Ethambutol65.

GyrA and GyrB

These two genes, 2517bp and 2028bp DNA long genes, 
respectively with loci MG995190 and MG995415 respec-
tively, encode the two portions of the DNA gyrase subunits 
A and B in M. tuberculosis (strain ATCC 25618/H37Rv)24. 
DNA gyrase A type II topoisomerase supercoils closed cir-
cular double-stranded (ds) DNA in an ATP-dependent way 
to keep chromosomes un-wound while relaxing super-
coiled dsDNA in the absence of ATP66,67. Interconversion 
of other topological isomers of dsDNA rings, such as cat-
enanes, is also catalyzed by this enzyme68. It is also wor-
thy of note that, in comparison to E. coli, M. tuberculosis’ 
gyrase shows a stronger decatenation than supercoiling 
activity; since M. tuberculosis only possesses one type II 
topoisomerase, its gyrase must also perform the decatena-
tion function of topoisomerase IV66,69.

These genes encode the two A and B subunits of the 
protein DNA gyrase, which targets the essential sec-
ond-line anti-tubercular drug group,the  fluoroquinolo-
nes. These drugs block mycobacterial DNA synthesis 
by inhibiting the activity of DNA gyrase (topoisomerase 
II) and topoisomerase IV. DNA gyrase inhibition pre-
vents the relaxation of the positively supercoiled DNA, 
an essential step in bacterial transcription and, thus, rep-
lication70. One or more point mutations mediate a high 
level of resistance to fluoroquinolones in the gyrA and 
gyrB genes. The number of mutations elucidated in both 
genes is tremendous and cannot discussed here, and 
more information can be found in cited literature70-75.

TlyA

The tlyA gene is a 696bp DNA long gene with locus 
MK783785 that encodes the protein 16S/23S rRNA (cyt-
idine-2’-O)-methyltransferase TlyA in M. tuberculosis 
(strain ATCC 25618/H37Rv)24. It acts as a host evasion 

RpoB

The rpoB gene is a 1577bp DNA long gene with locus 
MG995115 that encodes the protein, DNA-directed RNA 
polymerase subunit beta in Mycobacterium tuberculosis 
(strain ATCC 25618/H37Rv)24. It is a DNA-dependent RNA 
polymerase that uses the four ribonucleoside triphosphates as 
substrates to catalyze the transcription of DNA into RNA55.

The gene rpoB encodes the protein DNA-directed 
RNA polymerase subunit beta, and this is the target of 
the first-line drug Rifampin, which is bacteriocidal for 
M. tuberculosis. Rifampin binds to the beta-subunit of 
RNA polymerase to inhibit its activity56.

Point mutations in the ropB gene sequence lead to 
changes in the protein sequence of the polymerase that 
prevent rifampin binding and mediate resistance. The 
amino acid changes include a change of glutamate to ar-
ginine in position 138, isoleucine to alanine in position 
147, lysine to alanine in position 148, and finally serine 
to alanine in position 149, with these mutations contrib-
uting to increasing resistance to Rifampin57,58.

RRS

The RRS gene, also known as the 16S rRNA gene, is a 
1550bp DNA long gene that encodes the ribosome’s small 
subunit ribosomal RNA molecules, which are responsible 
for the critical step of turning genetic material into func-
tional cell components via mRNA to protein translation in 
Mycobacterium tuberculosis (strain ATCC 25618/H37Rv)59.

The 16S-rRNA subunit encoded by the RRS gene tar-
gets the first-line drugs (Streptomycin), and second-line 
injectable drugs (Kanamycin, Capreomycin, and Amik-
acin). Mutations in this gene have been shown to confer 
resistance to the above-listed medicines, and these mu-
tations include: Alanine-Glycine substitution at position 
1408, Threonine-Alanine at 1406, Cysteine-Threonine 
at 1409, and Glycine-Threonine at 149160,61.

RsmG/GidB

The rsmG/gidB gene is a 568bp DNA long gene with lo-
cus MK783876 that encodes the Ribosomal protein RNA 
small subunit methyltransferase G in M. tuberculosis (strain 
ATCC 25618/H37Rv). It functions to methylate the N7 po-
sition of guanine in position 518 of 16S rRNA precisely24.

GidB is one of the most conserved genes in all bac-
terial species, being highly conserved in both gram-pos-
itive and gram-negative species. Mutations in this gene 
have been shown to cause a low level of resistance to 
Streptomycin in M. tuberculosis and possibly in all 
other bacteria61. The mutation responsible for this resis-
tance is a deletion of alanine at position 48861.

EmbB

The embB gene is an 860bp DNA long gene with locus 
MK526900 that encodes the protein arabinosyl-transferase 
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Antibiotic resistance-causing mutations are fre-
quently associated with fitness costs85-91. While early 
studies85,90,92,93 of in vitro-generated resistance suggest-
ed that mutations associated with M. tuberculosis re-
sistance impaired bacterial growth rates or virulence, 
recent evidence94 shows that mutations observed among 
clinical drug-resistant M. tuberculosis strains differ 
from those observed among these laboratory-derived 
resistant mutants. These mutations are frequently not 
associated with a reduction in growth rate88,95 and are 
often equally transmissible as their laboratory-derived 
resistant mutants. These drug-resistant mutants’ lack 
of significant deficiencies could be due to low-cost 
resistance-conferring mutations or higher-cost resis-
tance-conferring mutations that originated in so-called 
pre-adapted genetic backgrounds and were later com-
pensated by additional mutations88,96-101.

Evolutionary fitness, on the other hand, is a compli-
cated feature that requires MDR M. tuberculosis to suc-
cessfully infect, multiply, and transfer to a secondary 
host102,103, while laboratory assays designed to evaluate 
fitness give valuable controlled and repeatable data, find-
ings from in vitro techniques may not always correlate 
with evolutionary or epidemiological fitness104,105 (i.e., 
transmissibility). On the other hand, epidemiological 
fitness is usually explored using cluster-based analysis, 
in which researchers compare the genetic similarities of 
sample isolates to discover possible transmission clusters.

Mutations have long conferred aminoglycoside re-
sistance in the rpsL gene, which codes for the ribosomal 
protein S12 in Escherichia coli and Salmonella species. 
It has recently been linked106,107 to the exact mechanism 
of M. tuberculosis. Lys43Arg is the only known rpsL 
mutation that allows non-restrictive ribosomal elonga-
tion and growth rates equivalent to wild-type M. tuber-
culosis108. Almost all experimental studies104,109-112 The 
Lys43Arg substitution in M. tuberculosis and other or-
ganisms has been shown to be a low-cost resistance mu-
tation that may remunerate in cis for higher-cost rpsL 
mutations and is potentially more virulent in vivo than 
other aminoglycoside resistance mutations.

PHENOTYPIC DRUG TOLERANCE

Bigger113 coined the word “persisters” in 1944 to de-
scribe bacteria that resisted drugs without developing 
heritable resistance. Persistence was eventually dubbed 
“phenotypic drug resistance” or “phenotypic tolerance” 
after the quality that allowed persisters to live. These 
early experiments112,113 significantly impact today’s an-
ti-infective finding approaches.

Hobby and Lenert114 expanded the study of pheno-
typic tolerance to include a different pathogen, M. tu-
berculosis, and two additional medications, Isoniazid, 
and para-aminosalicylate, two decades later. Isoniazid 
inhibits mycolic acid production, para-aminosalicylate 
inhibits folate synthesis, and penicillin inhibits peptido-
glycan synthesis. As a result, phenotypic tolerance was 
unaffected by the antibiotic’s chemical class or inhibited 
mechanisms.

factor that plays a crucial role in M. tuberculosis patho-
genesis by modifying adaptive immune responses and 
suppressing host protective Th1 and Th17 cytokine re-
sponses and autophagy76. Also, 2’-O-methylation at nu-
cleotides C1409 in 16S rRNA and C1920 in 23S rRNA is 
catalyzed by this enzyme, with the enzyme also exhibit-
ing in vitro hemolytic activities77,78.

The protein 16S/23S rRNA (cytidine-2’-O)-methyl-
transferase is the target for the second-line anti-tubercu-
lar drug capreomycin, an aminoglycoside. Capreomycin 
is an irreversible inhibitor of protein synthesis by binding 
to and preventing the activity of the above-stated protein77. 
In addition, TlyA appears to influence the ribosome, and 
capreomycin resistance is conferred by tlyA mutation79,80.

PncA

The pncA gene is a 561bp DNA long gene with locus 
KY659393 that encodes the protein nicotinamidase/
pyrazinamidase in Mycobacterium tuberculosis (strain 
ATCC 25618/H37Rv)24. Deamidation of nicotinamide 
(NAM) to nicotinate is catalyzed by this enzyme81.

The enzyme encoded by the pncA gene, nicotinami-
dase/pyrazinamidase, converts the pro-drug pyrazinamide 
to its active form, pyrazinoic acid. Mutations have been 
detected in the pncA gene of pyrazinamide-resistant M. 
tuberculosis, most of which vary from a total loss of enzy-
matic activity to a decrease in enzymatic activity on pyr-
azinamide. However, the fold of decline differs for each 
mutation. These mutations include Aspartate-Alanine at 
position 8 (total loss of enzymatic activity), Aspartate-Al-
anine at position 49 (410-fold decrease in enzymatic activ-
ity), Histidine-Alanine at position 51(21-fold reduction in 
enzymatic activity), Histidine-Alanine at position 57 (164 
fold decrease in enzymatic activity), Serine-Alanine at 
position 59 (2.4 fold decrease in enzymatic activity), His-
tidine-Alanine at position 71 (100 fold decrease in enzy-
matic activity), Lysine-Alanine at position 96 (total loss of 
enzymatic activity), Serine-Alanine at position 104 (3 fold 
decrease in enzymatic activity), and Cysteine-Alanine at 
position 138 (total loss of enzymatic activity)81.

FITNESS COSTS ASSOCIATED 
WITH DRUG RESISTANCE

Mycobacterium tuberculosis strains that are highly 
drug-resistant are a severe impediment to stopping the 
spread of tuberculosis in many contexts. According to 
recent World Health Organization estimates, approxi-
mately 450,000 (possible range, 300,000-600,000) in-
cident cases of multidrug-resistant (MDR), M. tubercu-
losis (defined as a strain resistant to at least Isoniazid 
and rifampicin)82 is already a well-known issue in areas 
where drug-resistant tuberculosis accounts for a signif-
icant proportion of tuberculosis cases or where the to-
tal burden of MDR tuberculosis is high, the threat that 
these highly resistant strains of M. tuberculosis pose to 
global containment is highly dependent on their evolu-
tionary fitness83,84.
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The above statements constitute a hypothesis that is cur-
rently being tested. It took another 40 years after Bigger’s 
publication113 for Coates to propose large-scale screening to 
target non-replicating M. tuberculosis. His idea seemed time-
ly when many pharmaceutical companies cut back or aban-
doned anti-infective research. Other companies followed the 
industry’s traditional practice of looking for broad-spectrum 
drugs that could heal widespread infections in economi-
cally prosperous areas. Only after 1999 a new financing 
landscape133 emerged, favouring academic-collaborations 
for drug discovery for infectious diseases that primarily 
affected financially disadvantaged regions. Pharmaceutical 
corporations and their academic partners only started large-
scale screenings for medications targeting phenotypically 
tolerant mycobacteria approximately ten years ago134.

CONCLUSIONS

Drug resistance is a global issue that poses a danger to ef-
fective Mycobacterium tuberculosis control. Even though 
drug resistance in M. tuberculosis is linked to changes in 
various genes, many resistant strains lack these common 
mutations. Therefore, from a clinical standpoint, having 
diagnostic techniques that are simple to use, affordable, 
and deliver quick results on a strain’s medication sensi-
tivity or resistance is probably more crucial. However, 
given the dynamics of tuberculosis transmission and the 
need to create new anti-TB medications, it is critical to 
expand our understanding of drug resistance’s molecular 
basis in all its complexities. It is essential to understand 
the link between specific mutations and the development 
of MDR-TB, as well as the link between drug resistance 
and fitness costs. This would allow for a more accurate 
forecast of future illness scenarios and a better evalua-
tion of the transmission dynamics of resistant strains. 
Furthermore, understanding the molecular basis of drug 
resistance would aid in the more rational development of 
new medications, which is now critical, given the rising 
prevalence of MDR- and XDR-TB around the world.
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The issue of persisters is crucial to tuberculosis treat-
ment. It is thought to be one of the reasons why, in for-
mal studies, the current WHO-approved treatment regi-
men for drug-sensitive tuberculosis takes six months to 
cure 95% of participants; in standard practice, the cure 
rate is around 86%. Drug-resistant tuberculosis usually 
requires more than two years of treatment, and a cure is 
rarely attained115. In the Cornell model116-118, mice with 
drug-sensitive tuberculosis treated with Isoniazid and 
pyrazinamide for two months harbour no detectable 
colony-forming units of M. tuberculosis when their or-
gan homogenates are distributed on bacteriologic agar. 
However, one-third of the remaining mice in the same 
cohort relapse spontaneously after a few months, and 
virtually all relapse if immunosuppressed with cortico-
steroids, anti-IFN, anti-TNF, or inhibitors of inducible 
nitric oxide synthase. The M. tuberculosis recovered 
during relapse is just as susceptible to Isoniazid and pyr-
azinamide as the inoculated population. These findings 
suggest that drug-tolerant persister populations exist fol-
lowing antibiotic treatment, even if they are temporarily 
undetected by conventional microbiologic approaches. 
Similarly, M. tuberculosis was found119,120 in sputa from 
roughly 80% of treatment-naive tuberculosis patients, 
although it was not measurable by CFU analysis.

The difficulty of turning the previous knowledge into a 
faster and more efficient tuberculosis treatment is illustrat-
ed by the experience with metronidazole. In several animal 
models, M. tuberculosis experiences hypoxia in necrotic 
granulomas. Hypoxia causes mycobacteria to stop repro-
ducing in vitro and develop phenotypic tolerance to most 
treatments. On the other hand, metronidazole is an anti-
bacterial and anti-parasitic medication that kills hypoxic 
mycobacteria in vitro. As a result, metronidazole appeared 
to be a good choice for killing non-replicating M. tuber-
culosis. However, metronidazole action in tuberculosis 
animal models did not always correspond with hypoxia 
in granulomas121-128. Other than contributing to peripher-
al neuropathy, metronidazole improved the proportion of 
patients whose sputum became smear- or culture-negative 
after one month of treatment but had no effect on treatment 
outcome at six months129. In retrospect, metronidazole’s 
capacity to kill hypoxic M. tuberculosis in vitro was inves-
tigated without an alternate electron acceptor, putting the 
organism at a more significant disadvantage than it would 
experience in vivo. M. tuberculosis can receive electrons 
from various sources, including nitrate and fumarate130-132. 
Nitrate is a naturally occurring component of human bodi-
ly fluid. The in vitro efficacy of pyrazinamide was signifi-
cantly reduced when nitrate was added128.

The experience with metronidazole implies that 
finding medicines with the exceptional quality of kill-
ing bacteria that are phenotypically tolerant to most 
other antibiotics may not be enough. It is also essential 
to understand how bacteria become phenotypically tol-
erant. It concerns how the bacteria are prevented from 
replicating if phenotypic tolerance is created by using 
settings that prevent them from reproducing. The more 
closely the conditions match those in the host, the more 
probable medications that operate under those settings 
will also work in the host.
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